1.

Alkenes are unsaturated hydrocarbons. They show structural isomerism. Alkenes take part in addition reactions and form polymers.

iii a	addition roughlond and form polymore.					
(a)	Structural isomers have the same molecular formula but different structural formulae Give an example of structural isomerism.					
	mo	ecular formula				
	two	structural formulae				
		[:	3]			
(b)	Ethene reacts with each of the following. Give the name and structural formula of eaproduct.					
	(i)	steam				
		name of product				
		structure of product				
			01			
		Į.	2]			
	(ii)	hydrogen				
		name of product				
		structure of product				

(i)	Explain the term polymerise.				
	ro.				
(ii)	What is the difference between addition polymerisation and condensation				
	polymerisation?				
	[2]				
(iii)	Poly(dichloroethene) is used extensively to package food. Draw its structure. The structural formula of dichloroethene is drawn below.				
	H $C = C$				
	H Cl				
	[2]				
	el may be coated with another metal, eg zinc or chromium, or with a polymer, eg (chloroethene), to prevent rusting.				
(i)	Suggest a property of poly(chloroethene) that makes it suitable for this purpose.				
(ii)	Explain why the steel will rust when the protective coating of chromium or polymer				
	is broken. [1]				
(iii)					
	[0]				
	[2]				

(c) Alkenes polymerise by addition.

2.

Esters occur naturally in plants and animals. They are manufactured from petroleum. Ethyl ethanoate and butyl ethanoate are industrially important as solvents.

(a)	(i)	Explain the term solvent.
		[1]

(ii) Give the formula of ethyl ethanoate.

.....[1]

(b) The following equation represents the alkaline hydrolysis of a naturally occurring ester.

(i) Which substance in the equation is an alcohol? Underline the substance in the equation above.

[1]

(ii) What is the major use for compounds of the type C₁₇H₃₅COONa?

ı		\ Δ	nalı	/mar	has	tha	structure	shown	hΔl	OW
١	•	, ,		y i i i C i	Has	uic	Structure	SHOWII		OVV.

	(i)	What type of polymer is this?
		[1]
	(ii)	Complete the following to give the structures of the two monomers from which the above polymer could be made.
		[2]
(d)	was	ers are frequently used as solvents in chromatography. A natural macromolecule hydrolysed to give a mixture of amino acids. These could be identified by omatography.
	(i)	What type of macromolecule was hydrolysed?
		[1]
	(ii)	What type of linkage was broken by hydrolysis?
		[1]
	(iii)	Explain why the chromatogram must be sprayed with a locating agent before the amino acids can be identified.
		[1]
	(iv)	Explain how it is possible to identify the amino acids from the chromatogram.
		[2]

3

Alke	enes	are unsaturate	ed hydrocarbons. They undergo addition reactions.				
(a)	a) Two of the methods of making alkenes are cracking and the thermal decomposition chloroalkanes.						
	(i)	Complete an	equation for the cracking of the alkane, decane.				
		C ₁₀ H ₂₂ decane	→ +				
	(ii)		be made by the thermal decomposition of chloropropane. v chloropropane can be made from propane.				
		reagents	propane and				
		conditions		[4]			
(b)	The	following alke	nes are isomers.				
			$\begin{array}{ccc} \operatorname{CH_3-CH_2-CH=CH_2} & & \operatorname{CH_3-C=CH_2} \\ & & \operatorname{CH_3} \end{array}$				
	(i) Explain why they are isomers.						
(ii) Give the name and structural formula of another hydrocarbon that is isome the above.							
		name					
		structural forn	mula				

(C	Give the name of the	product when	but-1-ene reacts	with each of th	e followina.

steam

hydrogen

(d) Alkenes can polymerise.

(i) Deduce the name and structural formula of the monomer from the structure of the polymer.

name of monomer

structural formula